Copied to
clipboard

G = C42.20C23order 128 = 27

20th non-split extension by C42 of C23 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.20C23, (C2×D4)⋊9Q8, C4⋊Q87C22, D4.5(C2×Q8), C4⋊C810C22, C4⋊C4.341D4, D42Q83C2, D4.Q814C2, D4⋊Q820C2, C2.13(D4○D8), C4⋊C4.44C23, (C2×C8).28C23, C2.D850C22, C4.Q859C22, C4.32(C22×Q8), (C2×C4).279C24, C22⋊C4.142D4, (C4×D4).69C22, C23.448(C2×D4), C4.67(C22⋊Q8), C42.C21C22, C2.20(D4○SD16), (C2×D4).397C23, C23.25D45C2, M4(2)⋊C419C2, D4⋊C4.26C22, C42.6C229C2, (C22×C4).998C23, (C22×C8).181C22, C22.11C24.8C2, C23.37D4.3C2, C22.539(C22×D4), C22.10(C22⋊Q8), C23.41C233C2, (C22×D4).355C22, (C2×M4(2)).68C22, C42⋊C2.118C22, C4.89(C2×C4○D4), (C2×C4).481(C2×D4), (C2×C4).103(C2×Q8), C2.60(C2×C22⋊Q8), (C2×D4⋊C4).28C2, (C2×C4).481(C4○D4), (C2×C4⋊C4).605C22, SmallGroup(128,1813)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.20C23
C1C2C4C2×C4C22×C4C22×D4C22.11C24 — C42.20C23
C1C2C2×C4 — C42.20C23
C1C22C42⋊C2 — C42.20C23
C1C2C2C2×C4 — C42.20C23

Generators and relations for C42.20C23
 G = < a,b,c,d,e | a4=b4=d2=1, c2=e2=a2b2, ab=ba, cac-1=a-1b2, ad=da, eae-1=ab2, cbc-1=dbd=b-1, be=eb, dcd=bc, ece-1=a2b2c, de=ed >

Subgroups: 404 in 199 conjugacy classes, 100 normal (38 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C24, D4⋊C4, C4⋊C8, C4.Q8, C4.Q8, C2.D8, C2.D8, C2×C22⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4×D4, C22⋊Q8, C42.C2, C42.C2, C4⋊Q8, C4⋊Q8, C22×C8, C2×M4(2), C22×D4, C2×D4⋊C4, C23.37D4, C42.6C22, C23.25D4, M4(2)⋊C4, D4⋊Q8, D42Q8, D4.Q8, C22.11C24, C23.41C23, C42.20C23
Quotients: C1, C2, C22, D4, Q8, C23, C2×D4, C2×Q8, C4○D4, C24, C22⋊Q8, C22×D4, C22×Q8, C2×C4○D4, C2×C22⋊Q8, D4○D8, D4○SD16, C42.20C23

Smallest permutation representation of C42.20C23
On 32 points
Generators in S32
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 21 18 26)(2 22 19 27)(3 23 20 28)(4 24 17 25)(5 30 11 16)(6 31 12 13)(7 32 9 14)(8 29 10 15)
(1 16 20 32)(2 29 17 13)(3 14 18 30)(4 31 19 15)(5 23 9 26)(6 27 10 24)(7 21 11 28)(8 25 12 22)
(5 30)(6 31)(7 32)(8 29)(9 14)(10 15)(11 16)(12 13)(21 26)(22 27)(23 28)(24 25)
(1 4 20 19)(2 18 17 3)(5 8 9 12)(6 11 10 7)(13 30 29 14)(15 32 31 16)(21 24 28 27)(22 26 25 23)

G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,18,26)(2,22,19,27)(3,23,20,28)(4,24,17,25)(5,30,11,16)(6,31,12,13)(7,32,9,14)(8,29,10,15), (1,16,20,32)(2,29,17,13)(3,14,18,30)(4,31,19,15)(5,23,9,26)(6,27,10,24)(7,21,11,28)(8,25,12,22), (5,30)(6,31)(7,32)(8,29)(9,14)(10,15)(11,16)(12,13)(21,26)(22,27)(23,28)(24,25), (1,4,20,19)(2,18,17,3)(5,8,9,12)(6,11,10,7)(13,30,29,14)(15,32,31,16)(21,24,28,27)(22,26,25,23)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,21,18,26)(2,22,19,27)(3,23,20,28)(4,24,17,25)(5,30,11,16)(6,31,12,13)(7,32,9,14)(8,29,10,15), (1,16,20,32)(2,29,17,13)(3,14,18,30)(4,31,19,15)(5,23,9,26)(6,27,10,24)(7,21,11,28)(8,25,12,22), (5,30)(6,31)(7,32)(8,29)(9,14)(10,15)(11,16)(12,13)(21,26)(22,27)(23,28)(24,25), (1,4,20,19)(2,18,17,3)(5,8,9,12)(6,11,10,7)(13,30,29,14)(15,32,31,16)(21,24,28,27)(22,26,25,23) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,21,18,26),(2,22,19,27),(3,23,20,28),(4,24,17,25),(5,30,11,16),(6,31,12,13),(7,32,9,14),(8,29,10,15)], [(1,16,20,32),(2,29,17,13),(3,14,18,30),(4,31,19,15),(5,23,9,26),(6,27,10,24),(7,21,11,28),(8,25,12,22)], [(5,30),(6,31),(7,32),(8,29),(9,14),(10,15),(11,16),(12,13),(21,26),(22,27),(23,28),(24,25)], [(1,4,20,19),(2,18,17,3),(5,8,9,12),(6,11,10,7),(13,30,29,14),(15,32,31,16),(21,24,28,27),(22,26,25,23)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E···4L4M4N4O4P8A8B8C8D8E8F
order122222222244444···44444888888
size111122444422224···48888444488

32 irreducible representations

dim11111111111222244
type+++++++++++++-+
imageC1C2C2C2C2C2C2C2C2C2C2D4D4Q8C4○D4D4○D8D4○SD16
kernelC42.20C23C2×D4⋊C4C23.37D4C42.6C22C23.25D4M4(2)⋊C4D4⋊Q8D42Q8D4.Q8C22.11C24C23.41C23C22⋊C4C4⋊C4C2×D4C2×C4C2C2
# reps11111122411224422

Matrix representation of C42.20C23 in GL6(𝔽17)

1300000
1340000
000010
00111615
0016000
0011016
,
1600000
0160000
0001600
001000
00161612
00101616
,
2130000
14150000
0031400
00141400
00141466
00301411
,
1600000
1610000
0001600
0016000
00161612
0000016
,
1300000
1340000
000010
00111615
001000
0000016

G:=sub<GL(6,GF(17))| [13,13,0,0,0,0,0,4,0,0,0,0,0,0,0,1,16,1,0,0,0,1,0,1,0,0,1,16,0,0,0,0,0,15,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,16,1,0,0,16,0,16,0,0,0,0,0,1,16,0,0,0,0,2,16],[2,14,0,0,0,0,13,15,0,0,0,0,0,0,3,14,14,3,0,0,14,14,14,0,0,0,0,0,6,14,0,0,0,0,6,11],[16,16,0,0,0,0,0,1,0,0,0,0,0,0,0,16,16,0,0,0,16,0,16,0,0,0,0,0,1,0,0,0,0,0,2,16],[13,13,0,0,0,0,0,4,0,0,0,0,0,0,0,1,1,0,0,0,0,1,0,0,0,0,1,16,0,0,0,0,0,15,0,16] >;

C42.20C23 in GAP, Magma, Sage, TeX

C_4^2._{20}C_2^3
% in TeX

G:=Group("C4^2.20C2^3");
// GroupNames label

G:=SmallGroup(128,1813);
// by ID

G=gap.SmallGroup(128,1813);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,112,253,120,758,1018,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=d^2=1,c^2=e^2=a^2*b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,a*d=d*a,e*a*e^-1=a*b^2,c*b*c^-1=d*b*d=b^-1,b*e=e*b,d*c*d=b*c,e*c*e^-1=a^2*b^2*c,d*e=e*d>;
// generators/relations

׿
×
𝔽